Entradas

BRISA.net Social Eco-Housing

BRISA.net Social Eco-Housing

Bloque de viviendas sociales, ecológicas y bioclimáticas con consumo energético cero real a precio convencional

Paterna. Valencia. España
Doctor Arquitecto: Luis De Garrido
9.675 m2
3.970.354 euros

………………………………………………………………………………………………………

Configuración arquitectónica

El conjunto residencial de viviendas sociales BRISA.net, es la solución presentada al concurso de arquitectura organizado por el IVVSA. Este concurso tuvo como principal objetivo el diseño de un nuevo tipo de bloque de viviendas sociales en una parcela de la periferia de Paterna (Valencia). El bloque debía incluir un total de 54 viviendas sociales, así como un cierto conjunto de jardines, tiendas, salones de reuniones y centros comunitarios con la más alta calidad, al menor costo de construcción posible y con el mayor nivel ecológico posible.

La solución propuesta consiste en un bloque longitudinal dividido en dos partes iguales por un patio central, que son los núcleos de comunicación vertical, espacios reservados para actividades sociales y centros de reunión, y colectores solares térmicos.

Con el fin de satisfacer las necesidades y preferencias del mayor número de familias se han proyectado diferentes tipos de viviendas, dispuestas contiguas y conectadas por una galería de conexión longitudinal en el lado norte.

Las viviendas son flexibles y los usuarios pueden transformarlas a voluntad, en función de sus necesidades específicas. Del mismo modo, el usuario puede incluso cambiar la estructura y el color de su fachada, por lo que la apariencia del bloque permanece en cambio constante, dependiendo del conjunto de acciones individuales de sus ocupantes.

Para suavizar el impacto visual de los cambios continuados en la fachada y mantener un aspecto neutro y de respeto al espacio urbano, se han cubierto todos los voladizos de la fachada mediante una gruesa malla metálica, creando los balcones de las viviendas. Esta malla tiene tres objetivos:

  1. Proporcionar una percepción visual estable de media y larga distancia (los cambios de distancia a la costa son claramente visibles).
  2. Brindar seguridad a las diferentes terrazas.
  3. Proporcionar una protección eficaz contra la radiación solar en verano, permitiendo el paso del máximo nivel de luz solar en invierno. Cuando la radiación solar es tangencial a la malla, se muestra gruesa y no puede atravesar, por lo que se genera sombra detrás de ella (verano). Por lo tanto, el edificio permanece fresco. Sin embargo, cuando la radiación solar discurre ortogonal a la malla, atraviesa fácilmente, llegando a las ventanas de la fachada (invierno). Esto tiende a calentar el edificio de forma natural.

Consumo energético cero real, al menor precio posible

BRISA.net tiene un consumo energético cero real (sin sobrecoste económico) porque se han seguido tres estrategias.

1. En primer lugar se ha informado adecuadamente a los ocupantes, haciéndoles saber la energía que consume cada artefacto, y el coste económico equivalente que pagan por la misma. Se les ha informado de los costes directos y de los costes indirectos (consumo, reparaciones, mantenimiento, etc.). También se les ha informado de todos los efectos secundarios que tiene la utilización de dichos artefactos (vibraciones, ruidos, olores, etc.) y su repercusión negativa en la salud, bienestar y felicidad (hoy en día vivir en una vivienda ofrece la misma calidad de vida que vivir continuamente en un avión en pleno vuelo).

2. Las viviendas se han diseñado de forma muy especial para que se autorregulen térmicamente y no necesite ningún artefacto de calefacción, ni de enfriamiento, ni de ventilación. Del mismo modo las viviendas se han diseñado para que se ventilen de forma natural, sin artefactos mecánicos, y que se ilumine de forma natural durante el día.

3. Las viviendas incorporan una mínima cantidad de artefactos electromecánicos. Tan solo aquellos que pueden considerarse imprescindibles para nuestro modo de vida, y accesibles para cualquier persona.

A continuación se proporciona una relación de los artefactos electromecánicos incorporados a BRISA.net, así como su potencia total:

Frigorífico 300 w. (potencia promediada)
Placa de inducción 900 w.
Microondas 700 w.
Lavadora 800 w.
Televisor (3) 200 w.
Ordenadores 100 w.
Iluminación leds 100 w.
Depuración agua de lluvia 100 w.
Radiador eléctrico 1.000 w.
Total: 4.200 w.

Por tanto, la potencia total de todos los artefactos electromecánicos de la vivienda es bastante reducida, ya que debido a su cuidadoso diseño bioclimático, los edificios no necesitan calefacción ni aire acondicionado. No obstante para suministrar la energía eléctrica para alimentar todos los artefactos de la vivienda se deberían instalar un conjunto de captores fotovoltaicos con una potencia de 4.200 w., con un coste económico elevado, que quizás no podrían pagar los compradores de las viviendas. Para reducir el coste del sistema fotovoltaico se debe reducir su potencia, y ello se puede hacer, ya que no todos los artefactos deben estar funcionando al mismo tiempo. En este sentido se han diseñado varios escenarios posibles de consumo y se ha llegado a la conclusión de que es posible no sobrepasar una potencia de 2.000 w. alternando la utilización de los diferentes artefactos.

Por ello se ha incorporado un sencillo sistema de control para que en ningún momento se supere la potencia de 2.000 w., desconectando los artefactos no imprescindibles cuando se deban conectar otros imprescindibles. De este modo el coste económico del sistema de generación de electricidad solar fotovoltaica puede ser muy reducido. En concreto se ha previsto un equipo de suministro de energía solar fotovoltaica que genera una potencia ligeramente superior, de 2.100 w., con un coste económico aceptable. El sistema fotovoltaico previsto dispone, por cada vivienda, de 6 captores solares fotovoltaicos (350 w. pico 24 v.) instalados en la cubierta, y tiene un coste económico medio, de unos 3.000 euros (IVA incluido) por vivienda. La potencia generada oscila continuamente alrededor de los 2.000 w. por lo que tan solo se debe tener la precaución de elegir el momento adecuado para utilizar la lavadora, y alternar el uso de microondas y la placa de inducción.

La energía total consumida por BRISA.net (la superficie media de las viviendas es de 120 m2) es muy reducida (44’60 kwha/m2), y desde luego (a pesar de tener una superficie reducida) inferior a los 50 kwha/m2 que exigen las ridículas normativas de muchos países para ser considerada como “edificio con consumo energético cero”.

Potencia. Funcionamiento. Energía año. Energía/m2
Frigorífico 300 w. * 24 h. * 365 = 2.628 kwh = 21’9 kwha/m2
Placa de inducción 900 w. * 2 h. * 365 = 657 = 5’47
Microondas 700 w. * 1 h. * 365 = 255’5 = 2’12
Lavadora 800 w. * 1 h. * 365 = 292 = 2’43
Televisor (3) 200 w. * 4 h. * 365 = 292  = 2’43
Ordenadores 100 w. * 8 h. * 365 = 292 = 2’43
Iluminación leds 100 w. * 5 h. * 365 = 182’5 = 1’52
Depuración aguas 100 w. * 1 h. * 365 = 36’5 = 0’30
Radiador eléctrico 1.000 w. * 8 h. * 90 = 720 = 6’00
Energía total consumida por m2 44’60 kwha/m2

Características bioclimáticas

1.1. Sistemas arquitectónicos de calefacción natural

Las viviendas se calientan solas, de dos formas:

a. Evitar el enfriamiento: debido a un adecuado aislamiento térmico, y proporcionando la mayor parte de la superficie acristalada al sur.
b. Debido a su cuidado y especial diseño bioclimático, las viviendas se calientan parcialmente con efecto invernadero, tarifa nocturna de radiación solar y acumuladores eléctricos. Las mallas metálicas colocadas a modo de doble piel en las galerías ubicadas al sur permiten que la luz del sol pase en invierno a través de las ventanas, y calientan las viviendas por efecto invernadero.

1.2. Sistemas arquitectónicos de refrigeración natural

Los sistemas de refrigeración bioclimáticos deben ser muy eficaces, dadas las altas temperaturas que se alcanzan durante el verano. Las casas se están enfriando solas, de tres formas:

a. Evitar ser calentado: proporcionando la mayor parte de la superficie acristalada del perímetro del patio cubierto; disminuir las ventanas de superficie máxima que conducen a los carriles exteriores; eliminación de protectores solares para la radiación solar directa e indirecta (un tipo diferente para cada uno de los orificios con diferente orientación de protección); y proporcionar un aislamiento adecuado.

b. Enfriamiento mediante un sistema de refresco arquitectónico que aumenta la eficacia de la ventilación cruzada. Para ello, se crea un gran espacio sombreado en la zona norte del edificio (galerías de acceso), que junto a un espeso volumen de vegetación retiene un gran volumen de aire fresco. Este volumen de aire disponible fluye a través de las viviendas, enfriándolas a su paso.

c. Evacuación del aire caliente exterior de las viviendas, a través de chimeneas solares ubicadas en la azotea.

3. Sistemas de acumulación

El frío generado durante la noche en verano (por ventilación natural y exterior por menor temperatura) se acumula en los suelos y paredes interiores de alta inercia térmica. De esta forma las viviendas permanecen frescas durante todo el día, sin consumo energético. Durante el día, las viviendas no se calientan, debido a los sistemas de enfriamiento natural utilizados.

La azotea ajardinada (con unos 35 cm. de tierra) con alta inercia térmica, además de un adecuado aislamiento, ayuda a mantener estables las temperaturas dentro de las viviendas.

4. Sistemas de transferencia (calor o frío)

El aire fresco asciende por el patio central y entra en cada una de las viviendas a través de un conjunto de ventilaciones ubicadas en el frente del patio central. El aire fresco fluye por todas las estancias de la vivienda perimetral a través de las rejillas de ventilación de las puertas interiores. El aire calentado sube y escapa por la parte superior de las ventanas de los muros perimetrales, y por un conjunto de chimeneas solares ubicadas en la azotea. El tipo de carcasa está diseñado específicamente para optimizar estos flujos de aire por los pasillos interiores.

5. Ventilación natural

La ventilación del edificio es continua y natural, a través de los muros perimetrales, permitiendo una adecuada ventilación sin pérdida de energía. Este tipo de ventilación es posible ya que todos los materiales son transpirables (cerámica, mortero de cemento-cal, pintura silicatos), aunque el conjunto tiene un comportamiento completamente hidrofóbico.

Innovaciones más destacadas

– Utilizar el metal como falso frente para el control y uso de mallas de radiación solar, y para generar un falso frente y suavizar el impacto visual que tienen las continuas variaciones del edificio, como consecuencia de las cambiantes preferencias y decisiones de sus ocupantes.

– El sistema constructivo utilizado permite el máximo nivel ecológico posible, ya que implica el menor consumo energético posible y la menor generación de residuos y emisiones posibles, ya que su ciclo de vida puede ser infinito, ya que todos los componentes del edificio pueden ser recuperados, reparados y reutilizados.

– Los captores solares térmicos se han dispuesto en la parte central del edificio de tal manera que en verano se produzcan sombras parciales entre sí, evitando una sobreproducción de agua caliente, y la posterior generación de averías. En invierno, sin embargo, entra la máxima radiación solar posible a los captores, porque ya no se dan sombra unos a otros, por lo que se mantienen calientes por efecto de la radiación solar y el efecto invernadero.

Luis De Garrido Architects

Dream Green Architecture

Luis De Garrido

Máster en Arquitectura. Máster en Urbanismo. Doctor Arquitecto. Doctor Informático. Doctor en Historia del Arte. Doctor Honoris Causa por la Universidad San Martín de Porres.

www.luisdegarrido.com info@luisdegarrido.com

00 34 96 322 33 33

…………………………………………………………………

Puedes formarte adecuadamente para proyectar edificios autosuficientes, ecológicos, bioclimáticos, industrializados, desmontables y con consumo energético cero:
Máster Avanzado en Arquitectura Ecológica, Bioclimática y Autosuficiente
www.masterarquitecturabioclimatica.com

DALMAU Eco-Building

DALMAU Eco-Building

Bloque de viviendas ecológicas y bioclimáticas. Viviendas con consumo energético cero real a precio convencional

Barcelona. España
Doctor Arquitecto: Luis De Garrido
587’45 m2
532.170 euros

………………………………………………………………………………………………………

Configuración arquitectónica

Se trata de un pequeño bloque de viviendas ecológicas y bioclimáticas, diseñado como experiencia piloto y alternativa inmobiliaria al mercado de viviendas de Barcelona.

Las viviendas tienen una superficie media de 120 m2, a un precio de mercado convencional, y pueden llegar a ser autosuficientes en energía y agua con apenas un pequeño pago adicional

1. Consumo energético cero real, al menor precio posible

DALMAU Eco-Building tiene un consumo energético cero real (sin sobrecoste económico) porque se han seguido tres estrategias.

1. En primer lugar se ha informado adecuadamente a los ocupantes, haciéndoles saber la energía que consume cada artefacto, y el coste económico equivalente que pagan por la misma. Se les ha informado de los costes directos y de los costes indirectos (consumo, reparaciones, mantenimiento, etc.). También se les ha informado de todos los efectos secundarios que tiene la utilización de dichos artefactos (vibraciones, ruidos, olores, etc.) y su repercusión negativa en la salud, bienestar y felicidad (hoy en día vivir en una vivienda ofrece la misma calidad de vida que vivir continuamente en un avión en pleno vuelo).

2. La vivienda se ha diseñado de forma muy especial para que se autorregule térmicamente y no necesite ningún artefacto de calefacción, ni de enfriamiento, ni de ventilación. Del mismo modo las viviendas se han diseñado para que se ventilen de forma natural, sin artefactos mecánicos, y para que todas sus estancias se iluminen de forma natural durante el día.

3. La vivienda incorpora una mínima cantidad de artefactos electromecánicos. Tan solo aquellos que pueden considerarse imprescindibles para nuestro modo de vida, y accesibles para cualquier persona.

A continuación se proporciona una relación de los artefactos electromecánicos incorporados a DALMAU Eco-Building, así como su potencia total:

Frigorífico 300 w. (potencia promediada)
Placa de inducción 700 w.
Microondas 500 w.
Lavadora 800 w.
Televisor (3) 200 w.
Ordenadores 100 w.
Iluminación leds 100 w.
Depuración de aguas 100 w. (potencia por vivienda)
Bomba de calor 1.500 w.
Total: 4.300 w.

Por tanto, la potencia total de todos los artefactos electromecánicos de la vivienda es bastante reducida, ya que debido a su cuidadoso diseño bioclimático, las viviendas del edificio no necesitan calefacción ni aire acondicionado. No obstante para suministrar la energía eléctrica para alimentar todos los artefactos de la vivienda se deberían instalar un conjunto de captores fotovoltaicos con una potencia de 4.300 w. (por vivienda), con un coste económico elevado, que quizás no podrían pagar los compradores de las viviendas. Para reducir el coste del sistema fotovoltaico se debe reducir su potencia, y ello se puede hacer, ya que no todos los artefactos deben estar funcionando al mismo tiempo. En este sentido se han diseñado varios escenarios posibles de consumo y se ha llegado a la conclusión de que es posible no sobrepasar una potencia de 2.000 w. alternando la utilización de los diferentes artefactos.

Por ello se ha incorporado un sencillo sistema de control para que en ningún momento se supere la potencia de 2.000 w., desconectando los artefactos no imprescindibles cuando se deban conectar otros imprescindibles. De este modo el coste económico del sistema de generación de electricidad solar fotovoltaica puede ser muy reducido. En concreto se ha previsto un equipo de suministro de energía solar fotovoltaica que genera una potencia ligeramente superior, de 2.450 w., con un coste económico aceptable. El sistema fotovoltaico previsto dispone, por cada vivienda, de 7 captores solares fotovoltaicos (350 w. pico 24 v.) instalados en la cubierta, y tiene un coste económico medio, de unos 4.500 euros por vivienda. La potencia generada oscila continuamente alrededor de los 2.450 w. por lo que tan solo se debe tener la precaución de elegir el momento adecuado para utilizar la lavadora, y alternar el uso de microondas y la placa de inducción. El total por tanto en la cubierta del edifico se ha instalado un conjunto de captores solares fotovoltaicos con una potencia total de 39.000 w. ((14 * 2.100) + 4.700 (zonas comunes)).

La energía total consumida por DALMAU Eco-Building (ls superficie de las viviendas es de 120 m2) es muy reducida (45’17 kwha/m2), y desde luego (a pesar de tener una superficie reducida) inferior a los 50 kwha/m2 que exigen las ridículas normativas de muchos países para ser considerada como “edificio con consumo energético cero”.

Potencia. Funcionamiento. Energía año. Energía/m2
Frigorífico 300 w. * 24 h. * 365 = 2.628 kwh = 21’9 kwha/m2
Placa de inducción 700 w. * 1 h. * 365 = 255’5 = 2’12
Microondas 500 w. * 2 h. * 365 = 365 = 3’04
Lavadora 800 w. * 1 h. * 365 = 292 = 2’43
Televisor 200 w. * 4 h. * 365 = 292  = 2’43
Ordenadores 100 w. * 8 h. * 365 = 292 = 2’43
Iluminación leds 100 w. * 5 h. * 365 = 182’5 = 1’52
Depuración aguas 100 w. * 1 h. * 365 = 36’5 = 0’30
Bomba de calor 1.500 w. * 8 h. * 90 = 1.080 = 9’00
Energía total consumida por m2 45’17 kwha/m2

2. Avanzado diseño bioclimático, que permite a la vivienda calentarse internamente en invierno sin necesidad de calefacción

La estructura arquitectónica del bloque de viviendas de DALMAU Eco-Building (y de cada una de las viviendas integrantes de los bloques) tiene un estudiado y avanzado diseño bioclimático. Este especial diseño permite que las diferentes viviendas del conjunto puedan autorregularse térmicamente todos los días del año, manteniendo en todo momento una temperatura interior de confort (entre 22ºc y 25ºc), sin necesidad de utilizar artefactos electromecánicos de calefacción y enfriamiento. Por tanto las viviendas son capaces de reconfigurarse de forma sencilla, para que puedan comportarse de forma adecuada, tanto en invierno (generando calor por sí mismas), como en verano (generando fresco por sí mismas).

En invierno las viviendas del conjunto se calientan por efecto invernadero y radiación solar directa. Las protecciones solares permiten que entre la máxima cantidad de radiación solar posible al interior de las viviendas, que se comportan como invernaderos. Las especiales cristaleras ubicadas al sur de la vivienda (con una superficie media de unos 12 m2) generan una potencia calorífica de unos 3.800 w. de media en invierno. Los ocupantes de la vivienda y las pérdidas energéticas del frigorífico y del resto de artefactos proporcionan una potencia calorífica adicional de unos 1.500 w. De forma complementaria se pueden conectar una pequeña bomba de calor, con la unidad interior ubicada en el salón, con una potencia de 1.500 w. Como consecuencia la vivienda mantiene en su interior una temperatura mínima de unos 22ºc en invierno, y no necesita sistemas mecánicos de calefacción.

3. Avanzado diseño bioclimático, que permite a la vivienda enfriarse internamente en verano sin necesidad de aire acondicionado

En verano las viviendas se refrescan por medio de una ventilación cruzada optimizada, en la que el aire de entrada se enfría de varios modos. En general se han creado varios espacios sombreados en la cara norte del bloque, con la finalidad de generar una gran bolsa de aire fresco. Este aire se impulsa a un conjunto laberíntico de galerías subterráneas ubicadas en la cimentación del bloque de viviendas. En estas galerías el aire se refresca hasta alcanzar unos 18º c. El aire fresco se distribuye por todas las viviendas a través de un conjunto de pequeños patios interiores, que además proporcionan cierta iluminación a las viviendas. El aire fresco recorre todas las estancias de las viviendas, refrescándolas a su paso. Finalmente el aire recalentado se escapa por la parte superior de las ventanas de las viviendas, creando una corriente de refresco continua.

Por otro lado, los ventanales de las viviendas están protegidos por medio de protecciones solares horizontales y verticales, evitando que la radiación solar directa entre al interior de las viviendas y las caliente. Estos ventanales además están equipados con protecciones solares correderas que los protegen de la radiación solar indirecta. En verano se pueden cerrar por completo las contraventanas exteriores situadas al sur, y las viviendas se iluminan por medio de la radiación solar indirecta procedente de las ventanas situadas al norte. Los días más húmedos del año se puede activar la pequeña bomba de calor, al mínimo de potencia, con la finalidad de que elimine parte de la humedad interior, y por tanto, refresque las viviendas (simplemente reduciendo un 40% la humedad la vivienda se refresca unos 5º c.). Finalmente los días extremadamente calurosos se puede activar la bomba de calor para ayudar a enfriar la vivienda. La bomba de calor tiene una potencia mínima y está alimentada por electricidad fotovoltaica.

Como consecuencia la vivienda mantiene en su interior una temperatura máxima de unos 25ºc en verano, y no necesita sistemas electromecánicos de aire acondicionado.

4. Autosuficiencia en energía

DALMAU Eco-Building es autosuficiente en energía, por lo que no necesita conectarse a la red eléctrica. No obstante, se ha conectado a la red con el fin de tener una fuente alternativa de energía.

Esta autosuficiencia energética se ha conseguido mediante un conjunto de estrategias complementarias:

1. Se ha realizado un óptimo diseño bioclimático para reducir al máximo la necesidad de energía. En el diseño de los bloques y de cada una de las viviendas se han utilizado todo tipo de estrategias bioclimáticas para conseguir que consuman la menor cantidad posible de energía, se iluminen de forma natural, se ventilen de forma natural, y se auto-regulen térmicamente. Como resultado, las viviendas se refrescan por sí mismas en verano, y se calientan por sí mismas en invierno. Del mismo modo, durante el día las viviendas se iluminan de forma natural, sin necesidad de luminarias artificiales.

2. Se han incorporado en la vivienda solo los electrodomésticos imprescindibles, y que además sean de muy bajo consumo eléctrico.

3. Se han utilizado sistemas de iluminación artificial a base de luminarias de bajo consumo energético.

4. Se ha previsto un sistema fotovoltaico de generación de electricidad con una potencia de 2.450 w. pico, para cada vivienda, para proporcionar la poca energía eléctrica que necesitan las viviendas. Los captores solares fotovoltaicos se han integrado sobre los áticos de las cubiertas.

5. Se han incorporado un conjunto de captores solares térmicos para generar el agua caliente sanitaria que necesitan las viviendas.

6. Se ha incorporado un sencillo sistema natural de des-humectación (a base de geles de silicato), ubicado en un conjunto de bandejas en el sistema de entrada de aire fresco de las viviendas. Este sistema natural reduce la humedad del aire y aumenta la sensación de fresco en los espacios internos de la vivienda, sin ningún consumo energético.

Complementariamente se ha dispuesto de una pequeña bomba de calor que reduce considerablemente la humedad del aire interior.

5. Autosuficiencia en agua

DALMAU Eco-Building es autosuficiente en agua. Es decir, no necesita conectarse a los sistemas de suministro de agua municipales (aunque se ha conectado a la red de agua potable con el fin de tener una fuente alternativa de agua, en caso de necesidad).

El agua necesaria para el consumo humano, para la higiene humana, y para el riego de los cultivos y de las zonas verdes se obtiene de varias fuentes complementarias:

Agua pluvial

El agua de lluvia que cae sobre la cubierta ajardinada de las viviendas se recoge y por medio de un sencillo sistema de bajantes, se filtra y se lleva hasta un depósito. El agua se puede utilizar para riego y para las cisternas del inodoro, y también convenientemente tratada mediante un sistema de ósmosis inversa, es apta para el consumo humano.

Reciclaje de aguas grises 

Las aguas grises generadas por la vivienda se filtran, se tratan y se utilizan para el riego del jardín.

6. Máximo nivel ecológico

DALMAU Eco-Building se ha diseñado cumpliendo escrupulosamente 39 indicadores ecológicos que Luis De Garrido ha identificado con la finalidad de lograr el máximo nivel ecológico posible en cualquier tipo de construcción (comparativamente algunas certificaciones, como en el caso de LEED, sólo utilizan tres de estos indicadores). Estos indicadores son los siguientes:

  1. Optimización de recursos. Naturales y artificiales

    1.1. Nivel de utilización de recursos naturales
    1.2. Nivel de utilización de materiales duraderos
    1.3. Nivel de utilización de materiales recuperados
    1.4. Capacidad de reutilización de los materiales utilizados
    1.5. Nivel de utilización de materiales reutilizables
    1.6. Capacidad de reparación de los materiales utilizados
    1.7. Nivel de utilización de materiales reciclados
    1.8. Capacidad de reciclaje de los materiales utilizados
    1.9. Nivel de aprovechamiento de los recursos utilizados

  2. Disminución del consumo energético

    2.1. Energía consumida en la obtención de materiales
    2.2. Energía consumida en el transporte de materiales
    2.3. Energía consumida en el transporte de la mano de obra
    2.4. Energía consumida en el proceso de construcción del edificio
    2.5. Energía consumida por el edificio a lo largo de su vida útil
    2.6. Nivel de adecuación tecnológica para la satisfacción de necesidades humanas
    2.7. Eficacia energética del diseño arquitectónico bioclimático
    2.8. Nivel de inercia térmica del edificio
    2.9. Energía consumida en el proceso de derribo o desmontaje del edificio

  3. Fomento de fuentes energéticas naturales

    3.1. Nivel de utilización tecnológica a base de energía solar
    3.2. Nivel de utilización tecnológica a base de energía geotérmica
    3.3. Nivel de utilización tecnológica a base de energías renovables por el ecosistema natural

  4. Disminución de residuos y emisiones

    4.1. Nivel de residuos y emisiones generadas en la obtención de materiales de construcción
    4.2. Nivel de residuos y emisiones generadas en el proceso de construcción
    4.3. Nivel de residuos y emisiones generadas en el mantenimiento de los edificios
    4.4. Nivel de residuos y emisiones generadas en el derribo de los edificios

  5. Aumento de la calidad de vida de los ocupantes de los edificios

    5.1. Emisiones perjudiciales para el ecosistema natural
    5.2. Emisiones perjudiciales para la salud humana
    5.3. Numero de enfermedades de los ocupantes del edificio
    5.4. Grado de satisfacción y bienestar de los ocupantes del edificio

  6. Disminución del mantenimiento y coste de los edificios

    6.1. Nivel de adecuación entre la durabilidad de los materiales y su ciclo de vida funcional
    6.2. Adecuación funcional de los componentes
    6.3. Recursos consumidos por el edificio en su actividad cotidiana
    6.4. Energía consumida por el equipamiento tecnológico del edificio
    6.5. Energía consumida en la accesibilidad al edificio
    6.6. Energía residual consumida por el edificio cuando no está ocupado
    6.7. Nivel de necesidad de mantenimiento en el edificio
    6.8. Nivel de necesidad de tratamiento de emisiones y residuos generados por el edificio
    6.9. Coste económico en la construcción del edificio
    6.10. Entorno social y económico

A continuación se reseñan algunas de las acciones más importantes realizadas para cumplir con los 39 indicadores:

  1. Optimización de recursos

    1.1 Recursos Naturales

    Se ha optimizado al máximo la utilización de recursos tales como el sol (para generar el agua caliente sanitaria, y proporcionar iluminación natural por todo el interior de la vivienda), la brisa, la tierra (para refrescar la vivienda), el agua de lluvia (depósitos de agua de reserva para riego del jardín y para su consumo), vegetación (aislamientos, recubrimientos, jardines verticales y la cubierta ajardinada), etc. Por otro lado, se han instalado dispositivos economizadores de agua en los grifos, duchas y cisternas de la vivienda, y sistemas de depuración y naturalización de agua de lluvia, para que sea apta para el consumo humano.

    1.2 Recursos Fabricados

    Todos los materiales empleados se han aprovechado al máximo para fabricar los componentes del edificio. Disminuyendo posibles residuos, mediante un proyecto correcto y una gestión eficaz.

    1.3 Recursos recuperados, reutilizado y reciclados

    La vivienda ha sido proyectada para que la mayoría de sus componentes puedan ser recuperados, de este modo se pueden reparar y se pueden reutilizar de forma indefinida. Del mismo modo los materiales utilizados pueden ser reciclados con facilidad con un coste energético mínimo.

  2. Disminución del consumo energético

    2.1 Construcción

    La vivienda ha sido proyectada para ser construida con el menor coste energético posible, optimizando los sistemas constructivos convencionales. De hecho el 70% de los componentes son industrializados, y se han fabricado con una cantidad mínima de energía. Además, todos los materiales han sido elegidos por su bajo consumo energético.

    2.2 Uso

    Debido a sus características bioclimáticas, DALMAU Eco-Building tiene un consumo energético muy bajo. Además, la poca energía necesaria se obtiene de la radiación solar. Las viviendas se calientan por efecto invernadero, y por el calor emitido por sus ocupantes. El agua caliente se genera por medio de los captores solares térmicos integrados en la fachada sur del conjunto. La energía eléctrica se obtiene mediante captores fotovoltaicos. Las viviendas se refrescan mediante un sistema arquitectónico geotérmico subterráneo, y no necesita ningún sistema mecánico de refresco, por lo que no consume energía.

    2.3 Desmontaje

    La mayoría de los componentes utilizados se pueden recuperar con facilidad, con el fin de ser reparados en caso de deterioro y ser utilizados de nuevo, de forma indefinida. Cuando los componentes alcancen un elevado nivel de deterioro y no se puedan volver a utilizar, se pueden reciclar, y de este modo, se pueden fabricar nuevos componentes y volver a colocarlos, de forma indefinida.

    El desmantelamiento es muy sencillo. Consume muy poca energía, ya que solo hay que quitar las piezas, una a una, en orden inverso a como se han colocado en el montaje.

  3. Utilización de fuentes energéticas alternativas

    Se han incorporado captores solares térmicos para generar agua caliente, y captores solares fotovoltaicos para generar electricidad.

  4. Disminución de residuos y emisiones

    La vivienda no genera ningún tipo de emisiones ni residuos.

  5. Mejora de la salud y el bienestar humanos

    Todos los materiales empleados son ecológicos y saludables, y no tienen ningún tipo de emisiones que puedan afectar la salud humana. Del mismo modo, las viviendas se ventilan de forma natural y aprovechan al máximo la iluminación natural, creando un ambiente saludable y proporcionando una mejor calidad de vida a sus ocupantes.

  6. Disminución del precio de la vivienda y su mantenimiento

    DALMAU Eco-Building ha sido proyectada de forma racional. La mayoría de sus componentes son industrializados, eliminando partidas superfluas, innecesarias o gratuitas, lo cual permite su construcción a un precio muy reducido, a pesar de sus características ecológicas. Del mismo modo, apenas necesita mantenimiento: limpieza habitual, y tratamiento bianual de la madera a base de lasures.

7. Materiales ecológicos utilizados

1. Cimentación y estructura

Los muros de sótano se han realizado a base de paneles prefabricados de hormigón armado, y pueden ser desmontados.

La estructura se ha realizado a base de pilares de hormigón y pilares metálicos (desmontables y recuperables), con forjado reticular por módulos.

El forjado se ha realizado a base de placas prefabricadas de hormigón armado aligerado.

Las envolventes arquitectónicas son de cuatro hojas:

– La hoja interior tiene un grosor medio de unos 20 cm y se ha realizado a base de paneles de hormigón y bloques de hormigón. En las partes que se han utilizado bloques, estos se han rellenado de arena o de aislamiento, dependiendo de su situación en los bloques. En otras partes del edificio se han utilizado paneles de hormigón armado aligerado de 15 cm de grosor.
– En el interior de la doble hoja existe una capa de aislamiento de cáñamo de 6 cm y una cámara de aire ventilada de 3 cm.
– La hoja exterior se ha construido a base de ladrillos cerámicos perforados de 7 cm.

2. Acabados exteriores

Pintura a los silicatos. Tablas machihembradas y rastreladas de madera Ipe, termotratadas y tintadas con aceites vegetales.

3. Acabados interiores

Pinturas vegetales. Solados de losetas de gres porcelánico. Puertas de tablero doble de madera aglomerada, chapado de madera de haya, y tratado con aceites vegetales.

4. Cubierta

Cubierta ajardinada con un espesor medio de 40 cm de tierra.

5. Conductos de agua y desagüe

Tuberías de agua de polipropileno. Tuberías de desagüe de polietileno. Electrodomésticos de alta eficiencia energética. Tabiques y suelos de vidrio de altas prestaciones (antideslizante, fácil limpieza, serigrafía especial,…). Carpintería de madera de Iroco tratada con aceites vegetales. Toldos de lona de algodón. Protecciones solares de madera maciza de Ipe, tratada con aceites vegetales. Todas las maderas utilizadas tienen un certificado de procedencia con tala selectiva y tratamiento ecológico (FSC).

Luis De Garrido Architects

Dream Green Architecture

Luis De Garrido

Máster en Arquitectura. Máster en Urbanismo. Doctor Arquitecto. Doctor Informático. Doctor en Historia del Arte. Doctor Honoris Causa por la Universidad San Martín de Porres.

www.luisdegarrido.com info@luisdegarrido.com

00 34 96 322 33 33

…………………………………………………………………

Puedes formarte adecuadamente para proyectar edificios autosuficientes, ecológicos, bioclimáticos, industrializados, desmontables y con consumo energético cero:
Master Avanzado en Arquitectura Ecológica, Bioclimática y Autosuficiente
www.masterarquitecturabioclimatica.com