Entradas

GEODA 2055 Eco-City

GEODA 2055 Eco-City

Ciudad autosuficiente, integrando edificios de viviendas ecológicos, bioclimáticos, prefabricados, industrializados, desmontables y con consumo energético cero real a precio convencional

Mondragón. España
Doctor Arquitecto: Luis De Garrido
10.000 personas, 105.000 m2

………………………………………………………………………………………………………

principalConfiguración arquitectónica

Geoda 2055 es una ciudad ecológica y autosuficiente construida en una cantera abandonada de Mondragón y capaz de albergar hasta 10.000 habitantes. La ciudad tiene una estructura formal cuadrangular, perfectamente ordenada según los ejes cardinales, y queda perfectamente integrada en la estructura formal de Mondragón.

La inspiración de la propuesta arquitectónica tiene un triple origen: el cooperativismo (creado en la ciudad de Mondragón), el carácter singular del pueblo Vasco, y las geodas.

1. Cooperativismo
El cooperativismo consigue que el la labor realizada por un conjunto ordenado de partes sea mas eficiente y tenga mayor valor añadido que la suma de partes, y mayor complejidad. Del mismo modo, la unión ordenada de edificios (de apariencia sencilla) mediante una trama espacial regular, ofrecerá una alta complejidad espacial en el conjunto.

2. Carácter singular y único del pueblo Vasco
Uno de los mayores valores del pueblo vasco es su singularidad y su belleza. En la solución propuesta estos valores se han asociado a las joyas, y a las gemas naturales nacidas de las entrañas de la tierra, Por este motivo, se han proyectado los edificios con una estructura formar inspirada en las leyes numéricas involucradas en la creación y en el crecimiento de las gemas naturales. No deben existen dos edificios iguales, aunque sean muy parecidos.

3. Geodas. Piedras preciosas
La rotura de una piedra con aspecto vulgar y feo deja al descubierto un conjunto de piedras preciosas (Geoda). Del mismo modo, la rotura desgarradora de una colina puede dejar ver un conjunto de piedras preciosas incrustadas, ofreciendo un panorama singular y de extremada belleza (Geoda 2055).

Lo que aparentemente puede parecer poco atractivo, y además una herida en la tierra, puede convertirse en algo bellísimo y de gran valor.

La ordenación perfectamente regular de estas piedras preciosas vascas, se inspira en el carácter cooperativo que impregna esta ciudad vasca.

Por todo ello, para ordenar el conjunto se ha propuesto una malla tridimensional confeccionada por medio de cubos de 30 * 30 * 30 m. organizados de forma regular, y adosados a las superficies horizontales y verticales de la cantera. De este modo, en el nivel de planta baja se han dispuesto un conjunto de 5 * 4 = 20 cubos.

Mientras que en las superficies verticales de la cantera se han “salpicado” un conjunto de cubos, organizados de forma precisa por medio de la malla espacial.

Cada cubo ocupa un lugar preciso, de acuerdo a la malla reguladora, con independencia de la superficie de la cantera. De este modo, el conjunto se asemeja a una “geoda” gigantesca, y cada cubo parece una piedra preciosa de cristal asomándose al exterior.

La rotura de la colina ha dejado al descubierto las piedras preciosas del interior de la Tierra. “Las piedras preciosas del País Vasco”.

Con respecto a los sistemas de comunicación de la ordenación, se han establecido tres niveles diferentes:

  1. El nivel de comunicación rodada
  2. El nivel del Jardín
  3. El nivel de comunicación de la parte vertical de la cantera

En el conjunto se han dispuesto varios tipos de edificios. El objetivo es dotar de “vida” toda la zona de la actuación, las 24 horas del día, los 365 días al año. Es decir, que exista una mezcla de usos adecuada para dotar un cierto carácter de autosuficiencia social al barrio, y hacer la vida lo mas placentera posible a sus ocupantes.

  1. Viviendas

    13 bloques de 81 viviendas cada bloque: 1.053 viviendas

  2. Restaurantes

    Parte superior de la “Torre Homenaje”

  3. Museo

    6 bloques. 42.000 m2: “Museo J. M. Arizmendiarrieta”

  4. Zona de usos terciarios

    4 bloques. 28.000 m2

  5. Oficinas

    3 bloques en forma de Torre: “Torre Homenaje”. 20.000 m2

Todos los edificios del conjunto, con independencia de su función tienen unas dimensiones idénticas (30 * 30 * 30) y una forma similar. En total se ha proyectado un tipo de cubo para cada función (en total hay 7 tipos de cubo diferentes).

La zona de usos terciarios, por requerimientos superficiales, comprende 4 cubos, que aparecen separados en el nivel superficial, pero que están unidos en los dos niveles inferiores.

De este modo se proporciona más importancia al conjunto, que a cada una de las partes. Siguiendo fieles el principio del cooperativismo. Todos los cubos son similares y, a su vez, todos son diferentes. Y lo que gana es el conjunto.

El único edificio diferente es la “Torre Homenaje” un edificio de gran altura, ubicado en la entrada al conjunto. Este edificio actúa como de “faro” indicando a los viajeros de la autopista que esta atravesando un lugar especial. Un lugar en el que debe parar, pues encontrará un verdadero joyero.

La “Torre Homenaje” es un edificio de oficinas, y en su parte superior dispone de un gran salón de actos, un restaurante, y varios centros de conferencias y congresos.

Todos los edificios de la ordenación tienen forma de cubo y tienen unas características similares: todos han sido diseñados para parecer “joyas”, piedras preciosas que emergen de la roca.

En este sentido, todos los edificios cúbicos disponen de una doble piel de vidrio, que actúa como invernadero en invierno, y como protección solar en verano. También disponen de un patio central cubierto, que actúa como invernadero en invierno, y como patio fresco y sombreado, en verano. Del mismo modo, disponen de una azotea ajardinada cubierta, para que pueda utilizarse continuamente, todos los días del año (protegiendo a sus ocupantes del sol, del viento y de la lluvia). Esta cubierta esta formada por un conjunto de captores solares térmicos y captores solares fotovoltaicos, que están perfectamente integrados en la estructura compositiva del cubo.

La doble piel de vidrio de los edificios les proporciona su carácter multimedia. De este modo, cambiando la información, la luz y el color proyectados, cambia la percepción visual del cubo de forma continuada a lo largo del día y de la noche. Ello resalta todavía más el carácter de “joya” de cada cubo.

Edificios de viviendas:

Cada bloque dispone de 81 viviendas y 81 plazas de garaje. Cada una de las 9 plantas dispone de 9 viviendas. Existen 7 tipos de viviendas, muy similares entre si, con una superficie comprendida entre 62’65 m2, y 71 ’65 m2.

Cada bloque dispone de un patio central cubierto, que garantiza unas correctas condiciones medioambientales, tanto en invierno, como en verano.

En invierno, se abren los paneles laterales del patio, convirtiéndolo en un invernadero. En verano se cierran para evitar que el patio se caliente. Los accesos a las viviendas son de vidrio, con el fin de proporcionar el máximo nivel de iluminación natural.

Cada vivienda es modular, de tal modo que el usuario puede variar, mediante paneles el número de estancias de la misma. Además, se pueden proyectar un determinado número de viviendas “por superficie”, esto es, como contenedor variable de usos.

Edificios terciarios:

Todos los bloques de oficinas, centro comercial y museo disponen de una planta libre, dentro de la envolvente de doble piel de vidrio. Del mismo modo, disponen de un patio central, que actúa, de nuevo, como autorregulador térmico, y como sistema de comunicación espacial y visual vertical.

Del mismo modo, todos estos bloques disponen de pequeños patios laterales en contacto con el exterior, de tal modo que las ventanas de los bloque están “volcadas” a estos patios.

Si se cierra la envolvente exterior de vidrio de estos patios perimetrales, se convierten en invernaderos-aislantes. Si se abren, se convierten en espacios frescos.

Características Bioclimáticas de los edificios

1. Calor

1.1. Generación de Calor

Para generar calor en el rascacielos se han utilizado las siguientes técnicas:

1.1.1. Técnicas para evitar que el rascacielos se enfríe en invierno:

Se ha diseñado una doble piel de vidrio con una cámara de aire intermedia de 2 metros de anchura. La piel exterior consiste en un vidrio templado-laminado (6-6-6), pre-tensado deforma perimetral, para poder resistir la enorme presión de la velocidad del viento a elevadas alturas, así como las retracciones del material debidas a los cambios de temperatura.

Esta piel exterior de vidrio dispone de una serigrafía especial de tal modo que deja pasar los rayos solares muy perpendiculares al vidrio (invierno) y no deja pasar a los rayos solares rasantes (verano). La piel interior consiste a su vez en un vidrio doble (6+6+6–12–6), que dispone de un sistema exterior de toldos y un sistema interior de triple rail de estores. El conjunto proporciona un aislamiento elevadísimo que evita las pérdidas energéticas en invierno.

1.1.2. Técnicas para calentar el rascacielos

– Efecto invernadero
La doble piel de vidrio permite dos sistemas de generación de calor para el edificio. Por un lado permite que la radiación solar penetre en las estancias del rascacielos y las caliente por radiación. Este calor se mantendrá durante la noche debido a la alta inercia del conjunto y las pocas pérdidas energéticas. Por otro lado la doble piel permite un efecto invernadero doble. El aire caliente generado asciende por la cámara existente entre la doble piel y se introduce al interior del edificio.

Si fuera necesario, el aire se introduce a un sistema mecánico que recalienta el aire hasta alcanzar la temperatura deseada, en otro caso, el aire precalentado entra directamente a las estancias interiores. Además, mediante un sistema ingenioso de aperturas de esta doble piel de vidrio se permite la ventilación en invierno con aire precalentado por el invernadero. De este modo se reduce sustancialmente el consumo energético.

– Energía geotérmica. Bolsa subterránea de agua caliente
De una bolsa subterránea de agua caliente se extrae agua para calentar algunos forjados del rascacielos (las estancias más grandes en la cara norte del edificio) por medio de un sistema de suelo radiante. De esta misma bolsa se genera un gran volumen de aire caliente que recorrerá el núcleo central del rascacielos de forma ascendente.

– Captores solares térmicos
En la parte sur (del edifico sur) existen captores solares térmicos (tubos de vacío) situados integrados en la malla metálica que se sitúa entre la doble piel de vidrio a la altura de cada forjado. De este modo el sistema protege de la radiación solar en verano, mientras que en invierno genera agua caliente (para el agua caliente sanitaria del rascacielos).

– Elevada inercia térmica del edificio
El calor generado durante el día por los métodos anteriores se acumula en el edificio debido a su elevada inercia térmica y lo mantiene caliente toda la noche. Ello facilita su calentamiento consecutivo al día siguiente.

1.2. Transmisión de Calor (y de luz)

Para calentar las estancias situadas al norte se ha diseñado un sistema de transferencia de calor a través de la doble piel de vidrio. Simplemente impulsando (por medio de ventiladores que se encuentran en la parte interna de la doble piel) el aire caliente que se genera en la parte sur del rascacielos, éste llega hasta la parte norte rodeando todo el edifico y calentándolo a su paso.

1.3. Acumulación de Calor

Debido a la alta inercia térmica del rascacielos, parte del calor generado durante el día se mantiene acumulado durante la noche, manteniendo calientes las estancias, sin apenas consumo energético.

2. Fresco

2.1. Generación de Fresco

Para generar fresco en el rascacielos se han utilizado las siguientes técnicas:

2.1.1. Técnicas para evitar que el rascacielos se caliente en verano:

– Protección frente a la radiación solar directa
En las zonas situadas al sur del edificio se logra abatiendo el vidrio exterior del sistema de doble piel de vidrio. De este modo no solo que no se genera calor por efecto invernadero, sino que los elementos horizontales opacos (que son los captores solares térmicos) protegen al vidrio de la radiación directa.

Además, se ha utilizado otra técnica complementaria consistente en utilizar vidrios serigrafiados por un sistema de puntos que permiten entrar los rayos solares muy perpendiculares al vidrio (invierno) y no dejan pasar a los rayos solares rasantes (verano). En este caso, el aire caliente que se crea en la doble piel de vidrio asciende a través de las rejillas que sirven de separación entre los forjados, y se escapan al exterior. Este aire circulante ventila la doble piel de vidrio y elimina las ganancias térmicas, aislando el edificio.

En las zonas situadas al este y oeste del edificio las protecciones solares horizontales no sirven, por lo que los vidrios exteriores no se abaten, y se cierran unos toldos exteriores a la piel interna de la doble piel de vidrio. De este modo la radiación solar no llega al interior del edificio y el aire recalentado en la cámara intermedia asciende a la parte superior exterior, a través de las rejillas horizontales que se encuentran a la altura de cada forjado del edificio.

– Protección a la radiación solar indirecta
Se logra por medio de tres niveles de estores interiores opacos, traslucidos y transparentes de varios colores. De este modo se controla la cantidad de luz deseada en cada ambiente del interior del rascacielos (entre 200 y 600 lux), así como el estado de ánimo de los trabajadores (mediante el color de los estores).

2.1.2. Técnicas para refrescar el rascacielos en verano

– Generación geotérmica de aire fresco
Existen varias tomas de aire alrededor del rascacielos. El aire que entra por estos tubos se impulsa hacia las galerías geotérmicas subterráneas. El aire así refrescado asciende al núcleo central del rascacielos en donde se ve succionado por el efecto de convección natural y efecto chimenea del interior del núcleo.

 

– Refresco de noche (ciclos circadianos)
Los forjados del rascacielos tienen una elevada inercia térmica, de este modo por la noche se permite que el aire exterior refresque el edificio, y se mantendrá fresco a lo largo del día siguiente. Un sencillo sistema de trampillas permite que de noche entre el aire del exterior, mientras que de día el aire entra solamente por el núcleo central (aire fresco).

 

– Energía geotérmica. Bolsa subterránea de agua fría
De la bolsa de agua fría subterránea se extrae el suficiente caudal de agua fría para refrescar parte de los forjados por medio de un sistema de suelo radiante.

– Des-humectación-pulverización de agua
Para refrescar el rascacielos de forma natural se ha hecho uso de un sistema sencillo y natural: pulverizar agua, con el fin que se evapore y, con ello, descienda la temperatura del entorno inmediato. Sin embargo, este método aumenta el nivel de humedad del aire, y por tanto aumenta la sensación de bochorno. Por ello, en primer lugar se des-humecta el aire, filtrándolo a través de sales que absorben la humedad, y a través de un dispositivo mecánico basado en el “efecto Peltier”. En segundo lugar, el aire seco resultante se enfría mediante un sistema de evaporación de agua pulverizada. Como resultado se obtiene aire fresco, y con un grado de humedad similar o inferior al estado natural del entorno.

2.2. Transmisión de Fresco

El aire fresco que entra a las oficinas desde el núcleo central recorre toda su superficie de forma centrifuga, refrescándolas a su paso. El aire escapa por los vidrios superiores de la piel interna de la doble piel de vidrio. Se crea una sobrepresión en la parte superior de la estancia por lo que el aire sale, evitando que el aire exterior entre a las estancias. De este modo las estancias permanecen frescas a lo largo del día sin necesidad alguna de sistemas mecánicos de aire acondicionado.

2.3. Acumulación de Fresco

La elevada inercia térmica del rascacielos (debido a los pesados forjados y a los jardines intermedios) permite que el aire fresco generado se mantenga a lo largo del día, sin apenas consumo energético.

Luis De Garrido Architects

Dream Green Architecture

Luis De Garrido

Máster en Arquitectura. Máster en Urbanismo. Doctor Arquitecto. Doctor Informático. Doctor en Historia del Arte. Doctor Honoris Causa por la Universidad San Martín de Porres.

www.luisdegarrido.com info@luisdegarrido.com

00 34 96 322 33 33

…………………………………………………………………

Puedes formarte adecuadamente para proyectar edificios autosuficientes, ecológicos, bioclimáticos, industrializados, desmontables y con consumo energético cero:
Máster Avanzado en Arquitectura Ecológica, Bioclimática y Autosuficiente
www.masterarquitecturabioclimatica.com

HAPPY CITY

HAPPY CITY

Ciudad ecológica, desmontable, bioclimática y autosuficiente, con consumo energético cero real

Self Sufficient Green Container City, for Patch Adams
Gesundheit institute area. Pocahontas County
West Virginia. USA

Doctor Arquitecto: Luis De Garrido
12.480 m2
9.650.000 euros

………………………………………………………………………………………………………

principal

Configuración arquitectónica

El objetivo de Happy City es diseñar una ciudad ecológica y autosuficiente (en energía, en agua y en alimentos) construida a base de contenedores para el Gesundheit Institute, de Patch Adams.

La ciudad alberga todo tipo de instalaciones sanitarias para cumplir con los objetivos del Gesundheit Institute, de Patch Adams. Además alberga espacios para realizar actividades lúdicas con la finalidad de proporcionar felicidad a todos los asistentes, especialmente para niños. En este sentido se han recuperado diferentes tipos de teatro muy habituales en otras épocas, y todo tipo de actividades lúdicas y educativas al aire libre.

La forma de la ciudad se ha inspirado en precedentes como los campamentos efímeros realizados con caravanas por los antiguos colonizadores del oeste americano, el santuario de piedra de Göbekli Tepe, el santuario de piedra de Stonehenge, y varios otros, como la ciudad jardín de Ebenezer Howard. Además, su estructura formal recuerda, vista desde el aire, a una enorme carita sonriente, simbolizando los objetivos primordiales de la ciudad: sanar y hacer felices a las personas.Happy City se ha construido a base de contenedores estándar de 20 pies y de 40 pies, entrelazados de formas diferentes.

La ciudad consta de un anillo perimetral doble, un arco de anillo interior y dos bloques independientes. El anillo exterior integra una calle circular continua enmarcada por una fila de contenedores. La parte sur del anillo incorpora las instalaciones sanitarias, con especialidades diferentes, y unidas entre sí. La parte norte del anillo perimetral incorpora los dormitorios de los empleados. El arco de anillo interior alberga las instalaciones lúdicas y los teatros, por último, los dos bloques incluyen las oficinas y los centros de meditación.

En el interior de la ciudad se han diseñado varios tipos de jardines transitables, en donde se realizan todo tipo de actividades lúdicas y culturales, cuando la climatología lo permite.

Alrededor de la ciudad existen contenedores que incluyen puntos de información y suministros de energía eléctrica y biodiesel a los vehículos y ambulancias que puedan llegar. Estos contenedores se han ubicado alrededor de las 8 entradas de la ciudad. 4 entradas corresponden a los 4 ejes cardinales, y las otras cuatro entradas están dispuestas en los ángulos que determinan la salida y la puesta del sol durante los solsticios de verano e invierno.

La plaza central dispone de varios elementos escultóricos a modo de reloj solar, que permite informar en cada momento de la hora y el día concreto del año. De forma complementaria, los elementos arquitectónicos han sido dispuestos de un modo tal que la radiación solar alcanza el tótem central únicamente en el amanecer y en el ocaso durante los solsticios de verano e invierno.

1. Consumo energético cero real, al menor precio posible

Happy City tiene un consumo energético cero real (sin sobrecoste económico) porque se han seguido tres estrategias.

1. En primer lugar se ha informado adecuadamente a los ocupantes, haciéndoles saber la energía que consume cada artefacto, y el coste económico equivalente que pagan por la misma. Se les ha informado de los costes directos y de los costes indirectos (consumo, reparaciones, mantenimiento, etc.). También se les ha informado de todos los efectos secundarios que tiene la utilización de dichos artefactos (vibraciones, ruidos, olores, etc.) y su repercusión negativa en la salud, bienestar y felicidad (hoy en día vivir en la mayoría de los edificios existentes ofrece la misma calidad de vida que vivir continuamente en un avión en pleno vuelo).

Alternativamente se les ha invitado a imaginar una vida sin estar rodeados de artefactos, eliminando todas las ataduras económicas y fiscales que ello supone (una vida sin averías, sin gastos, sin cuotas, sin mantenimientos, sin reparaciones, y sin pagar facturas de agua, ni facturas de electricidad). De este modo se ha conseguido una concienciación de los ocupantes, que finalmente han rechazado la mayoría de los artefactos habituales que se suelen incorporar en los edificios.

2. Los diferentes edificios se han diseñado de forma muy especial para que se autorregulen térmicamente y no necesiten ningún artefacto de calefacción, ni de enfriamiento, ni de ventilación. Del mismo modo se han diseñado para que se ventilen de forma natural, sin artefactos mecánicos, y que se iluminen de forma natural durante el día.

3. Los edificios incorporan una mínima cantidad de artefactos electromecánicos. Tan solo aquellos que pueden considerarse imprescindibles para nuestro modo de vida, y accesibles para cualquier persona.

2. Avanzado diseño bioclimático, que permite a los edificios calentarse internamente en invierno sin necesidad de calefacción

La estructura arquitectónica de los diferentes edificios de Happy City se ha generado como resultado de un estudiado y avanzado diseño bioclimático. Este especial diseño permite que los diferentes edificios del conjunto puedan autorregularse térmicamente todos los días del año, manteniendo en todo momento una temperatura interior de confort (entre 22ºc y 25ºc), sin necesidad de utilizar artefactos electromecánicos de calefacción y enfriamiento.

Por tanto los edificios son capaces de reconfigurarse de forma sencilla, para que puedan comportarse de forma adecuada, tanto en invierno (generando calor por sí mismos), como en verano (generando fresco por sí mismos).

En invierno los edificios del conjunto se calientan por efecto invernadero y radiación solar directa. Las protecciones solares permiten que entre la máxima cantidad de radiación solar posible al interior de los edificios, que se comportan como invernaderos.

3. Avanzado diseño bioclimático, que permite a los edificios enfriarse internamente en verano sin necesidad de aire acondicionado

Los edificios de Happy City han sido especialmente diseñados con la finalidad de que sean capaces de refrescarse por sí mismos, sin necesidad de artefactos de refresco.

Para ello se ha dispuesto de un entramado de galerías subterráneas debajo de cada edificio. Estas galerías suministran aire fresco al interior de los edificios, manteniendo fresco su interior en cada momento. El especial diseño de los edificios, les permite que no tengan ganancias térmicas solares, por lo que el aire fresco generado es suficiente para mantenerlos frescos todos los días del año.

Del mismo modo, los edificios disponen de dos largas chimeneas solares metálicas de forma cilíndrica, capaces de extraer el aire caliente de su interior.

4. Autosuficiencia en energía

Happy City es autosuficiente en energía, por lo que no necesita conectarse a la red eléctrica. No obstante, se ha conectado a la red con el fin de tener una fuente alternativa de energía.

Esta autosuficiencia energética se ha conseguido mediante un conjunto de estrategias complementarias:

1. Se ha realizado un óptimo diseño bioclimático para reducir al máximo la necesidad de energía. En el diseño de los edificios se han utilizado todo tipo de estrategias bioclimáticas para conseguir que consuman la menor cantidad posible de energía, se iluminen de forma natural, se ventilen de forma natural, y se auto-regulen térmicamente, todos los días del año. Como resultado, los edificios se refrescan por sí mismos en verano, y se calientan por sí mismos en invierno.

Del mismo modo, durante el día los edificios se iluminan de forma natural, todos los días del año, sin necesidad de luminarias artificiales.

2. Se han incorporado en los edificios solo los electrodomésticos imprescindibles, y que además sean de muy bajo consumo eléctrico.

3. Se han utilizado sistemas de iluminación artificial a base de luminarias de bajo consumo energético.

4. Se ha incorporado un sistema fotovoltaico de generación de electricidad, para proporcionar la poca energía eléctrica que necesitan los edificios. Los captores solares fotovoltaicos se han integrado en las cubiertas ajardinadas de los edificios.

5. Se han incorporado cuatro captores solares térmicos para producir el agua caliente necesaria. Los captores se han integrado en la cubierta ajardinada inclinada, del mismo modo que los captores solares fotovoltaicos.

5. Autosuficiencia en agua

Happy City es autosuficiente en agua. Es decir, no necesita conectarse a los sistemas de suministro de agua municipales (aunque se ha conectado a la red de agua potable con el fin de tener una fuente alternativa de agua, en caso de necesidad).

El agua necesaria para el consumo humano, para la higiene humana, y para el riego de los cultivos y de las zonas verdes se obtiene de varias fuentes complementarias:

Agua subterránea

Se ha realizado una perforación con el fin de conseguir agua de acuíferos subterráneos, que puede utilizarse directamente para riego (en realidad se ha reparado un pozo de riego previamente existente). El agua así obtenida se filtra y purifica, hasta convertirse en apta para el consumo humano. La última etapa de purificación y naturalización del agua se realiza mediante un sistema de ósmosis inversa con triple membrana, que regula las características del agua resultante por medio de un procesador electrónico.

Agua pluvial

El agua de lluvia que cae sobre la cubierta ajardinada de los edificios se recoge y por medio de un sencillo sistema de bajantes, se filtra y se lleva hasta un depósito. El agua se puede utilizar para riego y para las cisternas del inodoro, y también convenientemente tratada mediante un sistema de ósmosis inversa, es apta para el consumo humano.

Reciclaje de aguas grises 

Las aguas grises generadas por los edificios se filtran, se tratan y se utilizan para el riego del jardín.

6. Máximo nivel ecológico

Happy City se ha diseñado cumpliendo escrupulosamente 39 indicadores ecológicos que Luis De Garrido ha identificado con la finalidad de lograr el máximo nivel ecológico posible en cualquier tipo de construcción. Estos indicadores son los siguientes:

  1. Optimización de recursos. Naturales y artificiales

    1.1. Nivel de utilización de recursos naturales
    1.2. Nivel de utilización de materiales duraderos
    1.3. Nivel de utilización de materiales recuperados
    1.4. Capacidad de reutilización de los materiales utilizados
    1.5. Nivel de utilización de materiales reutilizables
    1.6. Capacidad de reparación de los materiales utilizados
    1.7. Nivel de utilización de materiales reciclados
    1.8. Capacidad de reciclaje de los materiales utilizados
    1.9. Nivel de aprovechamiento de los recursos utilizados

  2. Disminución del consumo energético

    2.1. Energía consumida en la obtención de materiales
    2.2. Energía consumida en el transporte de materiales
    2.3. Energía consumida en el transporte de la mano de obra
    2.4. Energía consumida en el proceso de construcción del edificio
    2.5. Energía consumida por el edificio a lo largo de su vida útil
    2.6. Nivel de adecuación tecnológica para la satisfacción de necesidades humanas
    2.7. Eficacia energética del diseño arquitectónico bioclimático
    2.8. Nivel de inercia térmica del edificio
    2.9. Energía consumida en el proceso de derribo o desmontaje del edificio

  3. Fomento de fuentes energéticas naturales

    3.1. Nivel de utilización tecnológica a base de energía solar
    3.2. Nivel de utilización tecnológica a base de energía geotérmica
    3.3. Nivel de utilización tecnológica a base de energías renovables por el ecosistema natural

  4. Disminución de residuos y emisiones

    4.1. Nivel de residuos y emisiones generadas en la obtención de materiales de construcción
    4.2. Nivel de residuos y emisiones generadas en el proceso de construcción
    4.3. Nivel de residuos y emisiones generadas en el mantenimiento de los edificios
    4.4. Nivel de residuos y emisiones generadas en el derribo de los edificios

  5. Aumento de la calidad de vida de los ocupantes de los edificios

    5.1. Emisiones perjudiciales para el ecosistema natural
    5.2. Emisiones perjudiciales para la salud humana
    5.3. Numero de enfermedades de los ocupantes del edificio
    5.4. Grado de satisfacción y bienestar de los ocupantes del edificio

  6. Disminución del mantenimiento y coste de los edificios

    6.1. Nivel de adecuación entre la durabilidad de los materiales y su ciclo de vida funcional
    6.2. Adecuación funcional de los componentes
    6.3. Recursos consumidos por el edificio en su actividad cotidiana
    6.4. Energía consumida por el equipamiento tecnológico del edificio
    6.5. Energía consumida en la accesibilidad al edificio
    6.6. Energía residual consumida por el edificio cuando no está ocupado
    6.7. Nivel de necesidad de mantenimiento en el edificio
    6.8. Nivel de necesidad de tratamiento de emisiones y residuos generados por el edificio
    6.9. Coste económico en la construcción del edificio
    6.10. Entorno social y económico

A continuación se reseñan algunas de las acciones más importantes realizadas para cumplir con los 39 indicadores:

  1. Optimización de recursos

    1.1 Recursos Naturales

    Se ha optimizado al máximo la utilización de recursos tales como la radiación solar (para generar agua caliente y electricidad; y proporcionar iluminación natural a todas las estancias de los edificios), la brisa, la tierra (para refrescar losa edificios), el agua de lluvia (depósitos de agua de reserva para riego del jardín y para su consumo), vegetación (aislamientos, recubrimientos, jardines verticales y la cubierta ajardinada), etc.

    Por otro lado, se han instalado dispositivos economizadores de agua en los grifos, duchas y cisternas de los edificios, y sistemas de depuración y naturalización de agua de lluvia, para que sea apta para el consumo humano.

    1.2 Recursos Fabricados

    Todos los materiales empleados se han aprovechado al máximo para fabricar los componentes del edificio, disminuyendo posibles residuos, mediante un correcto proyecto, y una gestión eficaz.

    1.3 Recursos recuperados, reutilizado y reciclados

    Los edificios han sido proyectados para que la mayoría de sus componentes puedan ser recuperados, de este modo se pueden reparar y se pueden reutilizar de forma indefinida. Del mismo modo los materiales utilizados pueden ser reciclados con facilidad con un coste energético mínimo.

  2. Disminución del consumo energético

    2.1 Construcción

    Los edificios han sido proyectados para ser construida con el menor coste energético posible, optimizando los sistemas constructivos convencionales. De hecho el 100% de los componentes son industrializados, y se han fabricado con una cantidad mínima de energía. Además, todos los materiales han sido elegidos por su bajo consumo energético.

    2.2 Uso

    Debido a sus características bioclimáticas, los edificios tienen un consumo energético muy bajo. Además, la poca energía que necesitan, la obtienen por sí mismos, de fuentes naturales renovables.

    El agua caliente se genera por los captores térmicos integrados en la cubierta ajardinada inclinada. Del mismo modo la energía eléctrica necesaria se obtiene por medio de los captores solares fotovoltaicos integrados en la cubierta ajardinada inclinada.

    Los edificios se refrescan mediante un sistema arquitectónico compuesto por un conjunto de galerías subterráneas, y no necesitan ningún sistema mecánico de acondicionamiento, por lo que no se consume energía. Es decir, los edificios son energéticamente autosuficientes.

    2.3 Desmontaje

    Todos los componentes utilizados se pueden recuperar con facilidad, con el fin de ser reparados en caso de deterioro, y ser utilizados de nuevo, de forma indefinida. Cuando los componentes alcancen un elevado nivel de deterioro, y no se puedan volver a utilizar, se pueden reciclar y de este modo, se pueden fabricar nuevos componentes que se pueden volver a colocar, de forma indefinida. El desmantelamiento es muy sencillo y consume muy poca energía, ya que solo hay que quitar las piezas, una a una, en orden inverso a como se han colocado en el montaje.

  3. Utilización de fuentes energéticas alternativas

    La energía utilizada es de dos tipos: solar térmica (captores solares para producir el A.C.S.), solar fotovoltaica (captores solares para producir la poca electricidad que necesitan los edificios).

  4. Disminución de residuos y emisiones

    Los edificios no generan ningún tipo de emisiones, y tampoco generan ningún tipo de residuos.

  5. Mejora de la salud y el bienestar humanos

    Todos los materiales empleados son ecológicos y saludables, y no tienen ningún tipo de emisiones que puedan afectar la salud humana. Del mismo modo, los edificios se ventilan de forma natural, y aprovechan al máximo la iluminación natural, lo que crea un ambiente saludable y proporciona la mejor calidad de vida posible a sus ocupantes.

  6. Disminución del precio de la vivienda y su mantenimiento

    Happy City ha sido proyectada de forma racional, y la mayoría de sus componentes son industrializados, eliminando partidas superfluas, innecesarias o gratuitas, lo cual permite su construcción a un precio muy reducido, a pesar de sus características ecológicas. Del mismo modo, apenas necesita mantenimiento: limpieza habitual, y tratamiento bianual de la madera a base de lasures.

7. Edificios 100% industrializados, prefabricados y desmontables

Los edificios tienen tres características que le confieren el mayor nivel ecológico posible.

  1. Edificio 100% industrializado

    Los diferentes edificios se han proyectado para que todos sus componentes arquitectónicos se realicen en fábrica, con la finalidad de ser fácilmente ensamblados en obra, utilizando únicamente tornillos.

    Al realizar todos los componentes en fábrica se puede optimizar el cumplimiento de todos los indicadores ecológicos, y por tanto permitir que se obtenga el mayor nivel ecológico posible.

    Optimización de recursos. En fábrica se optimizan los recursos de forma mucho más eficaz que en la construcción convencional en obra.
    Disminución del consumo energético. Los procesos constructivos en fábrica consumen mucha menos energía que los procesos constructivos convencionales en obra.
    Utilización de fuentes energéticas naturales. En fábrica se pueden utilizar fácilmente fuentes energéticas naturales (solar y eólica), mientras que es casi imposible hacerlo en una construcción convencional en obra.
    Disminución de residuos y emisiones. En fábrica se generan muchos menos residuos y emisiones que en una construcción convencional.
    Aumento de la salud, seguridad y bienestar. En fábrica se puede cuidar mucho más de la salud y bienestar de los trabajadores, que en una construcción convencional en obra.
    Disminución del coste económico y del mantenimiento. En fábrica, diseñando convenientemente cada uno de los componentes arquitectónicos se puede reducir el coste de la construcción.

  2. Edificios 100% prefabricado y modular

    Los edificios han sido diseñados utilizando el menor número posible de componentes industrializados. De este modo se ha creado un sistema de prefabricación modular. Las piezas no deben ser tamaño muy grande ya que entonces re reduciría su capacidad de reutilización, ya sea en el mismo edificio, o en otros edificios. Las piezas tampoco deben ser de tamaño pequeño, ya que en ese caso habría demasiadas piezas diferentes, y los costes aumentarán de forma exponencial. Por tanto el edifico se ha proyectado en base a una pequeña cantidad de piezas diferentes de tamaño mediano, y con el mayor número de piezas repetidas posible. De este modo las piezas se pueden recuperar, reparar y reutilizar, tanto en el mismo edificio o en cualquier otro.

  3. Edificios 100% desmontable

    Los edificios han sido proyectados de un modo muy especial para que todos sus componentes puedan ensamblarse entre sí tan solo utilizando tornillos y presión, y con la finalidad de que sean fácilmente recuperables, reparables y reutilizables. Todos los componentes arquitectónicos de los edificios se puedan montar y desmontar, de forma sencilla, tantas veces como sea necesario, y de este modo pueden ser reparados y reutilizados a lo largo del tiempo. Como resultado, todos los componentes de los edificios se pueden transportar a cualquier lugar, y por ello los edificios se pueden montar y desmontar de forma indefinida y trasladarse a cualquier lugar.

    Los edificios se han proyectado utilizando paneles de hormigón armado y paneles de hormigón de fibras, ensamblados entre sí por medio de perfiles metálicos. Este sistema permite que los diferentes edificios se puedan montar y desmontar tantas veces como sea necesario, y al mismo tiempo les proporciona una elevada inercia térmica para que se puedan autorregular térmicamente, sin necesidad de artefactos de calefacción y aire acondicionado. Incluso la cimentación de los edificios es desmontable.

8. Edificio con ciclo de vida infinito

Para lograr el mayor nivel ecológico posible en la fabricación de cualquier objeto, debe aumentarse al máximo su durabilidad, con el menor mantenimiento posible.

En cualquier actividad humana, para lograr el mayor nivel ecológico posible, se debe minimizar al máximo el impacto ecológico por unidad de tiempo. Por ello, la característica más importante que debe tener cualquier objeto es que tenga la mayor vida útil posible. Cuanto mayor sea su durabilidad (completamente funcional y con el menor mantenimiento posible) el impacto medioambiental por unidad de tiempo será menor. Por tanto, cuanto menos dure un determinado objeto, mayor será su impacto medioambiental, y menos ecológico será. El paradigma actual de fabricación de objetos denominado “obsolescencia programada” imposibilita por tanto fabricar ningún objeto que mínimamente pueda denominarse como “ecológico”.

Para que un objeto tenga la mayor durabilidad posible, con el menor mantenimiento posible, debe ser diseñado en base a elementos que puedan ser fácilmente reparables y reutilizables. De este modo cuando, con el paso del tiempo, y determinado componente se estropea, simplemente se desensambla del conjunto, se repara y se vuelve a poner.

Por ello los edificios de Happy City se han proyectado para ser construidos por medio de un conjunto discreto de componentes, que se pueden desensamblar fácilmente, se pueden reparar fácilmente, y se pueden reutilizar de forma indefinida. De este modo los edificios pueden llegar a tener un ciclo de vida infinito, y en todo caso, el menor impacto ecológico posible.

Luis De Garrido Architects

Dream Green Architecture

Luis De Garrido

Máster en Arquitectura. Máster en Urbanismo. Doctor Arquitecto. Doctor Informático. Doctor en Historia del Arte. Doctor Honoris Causa por la Universidad San Martín de Porres.

www.luisdegarrido.com info@luisdegarrido.com

00 34 96 322 33 33

…………………………………………………………………

Puedes formarte adecuadamente para proyectar edificios autosuficientes, ecológicos, bioclimáticos, industrializados, desmontables y con consumo energético cero:
Master Avanzado en Arquitectura Ecológica, Bioclimática y Autosuficiente
www.masterarquitecturabioclimatica.com